Elf: Efficient lightweight fast stream processing at scale
نویسنده
چکیده
Stream processing has become a key means for gaining rapid insights from webserver-captured data. Challenges include how to scale to numerous, concurrently running streaming jobs, to coordinate across those jobs to share insights, to make online changes to job functions to adapt to new requirements or data characteristics, and for each job, to efficiently operate over different time windows. The ELF stream processing system addresses these new challenges. Implemented over a set of agents enriching the web tier of datacenter systems, ELF obtains scalability by using a decentralized “many masters” architecture where for each job, live data is extracted directly from webservers, and placed into memory-efficient compressed buffer trees (CBTs) for local parsing and temporary storage, followed by subsequent aggregation using shared reducer trees (SRTs) mapped to sets of worker processes. Job masters at the roots of SRTs can dynamically customize worker actions, obtain aggregated results for end user delivery and/or coordinate with other jobs. An ELF prototype implemented and evaluated for a larger scale configuration demonstrates scalability, high per-node throughput, sub-second job latency, and subsecond ability to adjust the actions of jobs being run.
منابع مشابه
An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملCompression Planner for Time Series Database with GPU Support
Nowadays, we can observe increasing interest in processing and exploration of time series. Growing volumes of data and needs of efficient processing pushed research in new directions. This paper presents a lossless lightweight compression planner intended to be used in a time series database system. We propose a novel compression method which is ultra fast and tries to find the best possible co...
متن کاملELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games
In this paper, we propose ELF, an Extensive, Lightweight and Flexible platform for fundamental reinforcement learning research. Using ELF, we implement a highly customizable real-time strategy (RTS) engine with three game environments (Mini-RTS, Capture the Flag and Tower Defense). Mini-RTS, as a miniature version of StarCraft, captures key game dynamics and runs at 40K frame-persecond (FPS) pe...
متن کاملTWINE: A Lightweight Block Cipher for Multiple Platforms
This paper presents a 64-bit lightweight block cipher TWINE supporting 80 and 128bit keys. TWINE realizes quite small hardware implementation similar to the previous lightweight block cipher proposals, yet enables efficient software implementations on various platforms, from micro-controller to high-end CPU. This characteristic is obtained by the use of generalized Feistel structure combined wi...
متن کاملLightweight Asynchronous Snapshots for Distributed Dataflows
Distributed stateful stream processing enables the deployment and execution of large scale continuous computations in the cloud, targeting both low latency and high throughput. One of the most fundamental challenges of this paradigm is providing processing guarantees under potential failures. Existing approaches rely on periodic global state snapshots that can be used for failure recovery. Thos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014